https://doi.org/10.1016/0044-8486(95)01151-x ·
Journal: Aquaculture, 1996, №3-4, p.181-201
Publisher: Elsevier BV
Author: Jaap van Rijn
List of references
- Aboutboul, Anaerobic treatment of intensive fish culture effluents: Volatile fatty acid mediated denitrification, Aquaculture, № 133, с. 21
https://doi.org/10.1016/0044-8486(94)00385-2 - Alanara, An integrated approach to aquaculture and waste management
- Alleman, Elevated nitrate occurrence in biological wastewater treatment systems, Water Sci. Technol., № 17, с. 409
https://doi.org/10.2166/wst.1985.0147 - Alleman, Scanning electron microscope evaluation of rotating biological contactor biofilm, Water Res., № 16, с. 543
https://doi.org/10.1016/0043-1354(82)90074-4 - Arbiv, Performance of a treatment system for inorganic nitrogen removal from intensive aquaculture systems, Aquacult. Eng., № 14, с. 189
https://doi.org/10.1016/0144-8609(94)P4435-E - Armstrong, Acute toxicity of nitrite to larvae of the giant Malaysian prawn, Macrobrachium rosenbergii, Aquaculture, № 9, с. 39
https://doi.org/10.1016/0044-8486(76)90046-6 - Azov, Operation of high-rate oxidation ponds: Theory and experiments, Water Res., № 16, с. 1153
https://doi.org/10.1016/0043-1354(82)90133-6 - Balderston, Nitrate removal in a closed-system aquaculture by column denitrification, Appl. Environ. Microbiol., № 32, с. 808
https://doi.org/10.1128/AEM.32.6.808-818.1976 - Bejerano, Studies on the feasibility of developing a control for cyanobacteria by using photooxidation
- Bergheim, Treatment and utilization of sludge from landbased farms for salmon, с. 486
- Bergheim, Sludge removal from salmonid tank effluents using rotating microsieves, Aquacult. Eng., № 12, с. 97
https://doi.org/10.1016/0144-8609(93)90019-8 - Betlach, Kinetic explanation for accumulation of nitrite, nitric oxide and nitrous oxide during bacterial denitrification, Appl. Environ. Microbiol., № 42, с. 1074
https://doi.org/10.1128/AEM.42.6.1074-1084.1981 - Beveridge, A quantitative and qualitative assessment of wastes from aquatic animal production, с. 506
- Bovendeur, Fixed-film reactors applied to waste water treatment and aquaculture water recirculating systems, с. 171
- Boyd, The chemical oxygen demand of waters and biological material from ponds, Trans. Am. Fish. Soc., № 103, с. 606
https://doi.org/10.1577/1548-8659(1973)102<606:TCODOW>2.0.CO;2 - Boyd, Factors affecting respiration in dry pond soils, Aquaculture, № 120, с. 283
https://doi.org/10.1016/0044-8486(94)90085-X - Boyd, Effect of treatment with a commercial bacterial suspension on water quality in channel catfish ponds, Prog. Fish-Cult., № 46, с. 36
https://doi.org/10.1577/1548-8640(1984)46<36:EOTWAC>2.0.CO;2 - Brune, The design of a new high rate nitrification filter for aquaculture reuse, J. World Maricult. Soc., № 12, с. 20
https://doi.org/10.1111/j.1749-7345.1981.tb00239.x - Bullock, Qualitative and quantitative bacteriological studies on a fluidized sand biofilter used in a semiclosed trout culture system, Biol. Rep., № 17, с. 1
- Chen, Suspended solids in recirculating aquaculture systems, с. 170
- Chen, Production, characteristics, and modeling of aquacultural sludge from a recirculating aquacultural system using a granular media biofilter, с. 16
- Chen, Suspended solids characteristics from recirculating aquacultural systems and design implications, Aquaculture, № 112, с. 143
https://doi.org/10.1016/0044-8486(93)90440-A - Chin, A water treatment and recycling system for intensive fish farming, Water Sci. Technol., № 27, с. 141
https://doi.org/10.2166/wst.1993.0034 - Cohen, Ulva lactuca biofilters for marine fishponds effluents. 1. Ammonia uptake kinetics and nitrogen content, Bot. Mar., № 34, с. 475
https://doi.org/10.1515/botm.1991.34.6.475 - Colt, Aquacultural production systems, J. Anim. Sci., № 69, с. 4183
https://doi.org/10.2527/1991.69104183x - Colt, The effect of nitrite on the short-term growth and survival of channel catfish, Ictalurus punctatus, Aquaculture, № 24, с. 111
https://doi.org/10.1016/0044-8486(81)90048-X - Dalsgaard, Regulating factors of denitrification in trickling filter biofilms as measured with the oxygen/nitrous oxide microsensor, FEMS Microbiol. Ecol., № 101, с. 151
https://doi.org/10.1111/j.1574-6941.1992.tb01651.x - Diab, Transformation of nitrogen in sediments of fish ponds in Israel, Bamidgeh, № 38, с. 67
- Diab, Effect of light intensity on the activity and survival of Nitrosomonas sp. and Nitrobacter sp. isolates from fish ponds, Israeli J. Aquacult.-Bamidgeh, № 40, с. 50
- Fenton, On farm aerobic treatment of piggery wastes: the effect of residence time and storage on effluent quality, Water Res., № 14, с. 805
https://doi.org/10.1016/0043-1354(80)90260-2 - Focht, Biochemical ecology of nitrification and denitrification, с. 135
- Gabel, An integrated fixed film-activated sludge treatment system
- Goldman, Inorganic nitrogen removal in a combined tertiary treatment-marine aquaculture system. I. Removal efficiencies, Water Res., № 8, с. 45
https://doi.org/10.1016/0043-1354(74)90007-4 - Goldman, Inorganic nitrogen removal in a combined tertiary treatment-marine aquaculture system. II. Algal bioassays, Water Res., № 8, с. 55
https://doi.org/10.1016/0043-1354(74)90008-6 - Grady
- Haltrich, Reinigung eines nitrathaltigen, industriellen abwassers in einer belebungsanlage mit denitrificationsstufe, Munchner Beitr. Abwasser Fisch. Flussbiol., № 22, с. 92
- Harremoes, Biofilm kinetics, № Vol. 2, с. 71
- Harremoes, Criteria for nitrification in fixed film reactors, Water Sci. Technol., № 14, с. 167
https://doi.org/10.2166/wst.1982.0056 - Heinsbroek, Design and performance of water recirculation systems for eel culture, Aquacult. Eng., № 9, с. 187
https://doi.org/10.1016/0144-8609(90)90005-K - Helder, Estuarine nitrite maxima and nitrifying bacteria (Ems-Dollard estuary), Neth. J. Sea Res., № 17, с. 1
https://doi.org/10.1016/0077-7579(83)90002-9 - Hempel, Constraints and possibilities for developing aquaculture, Aquacult. Int., № 1, с. 2
https://doi.org/10.1007/BF00692661 - Hepher, Aquaculture intensification under land and water limitations, GeoJournal, № 10, с. 253
https://doi.org/10.1007/BF00462126 - Hickey, Start-up, operation, monitoring and control of high-rate anaerobic treatment systems, Water Sci. Technol., № 24, с. 207
https://doi.org/10.2166/wst.1991.0226 - Hirayama, Influences of nitrate accumulated in culturing water on Octopus vulgaris, Bull. Jpn. Soc. Sci. Fish., № 32, с. 105
https://doi.org/10.2331/suisan.32.105 - Hirayama, Water control by filtration in closed culture systems, Aquaculture, № 4, с. 369
https://doi.org/10.1016/0044-8486(74)90066-0 - Honda, High density rearing of Japanese flounder, Paralichthys olivaceus, with a closed seawater recirculation system equipped with a denitrification unit, Suisanzoshoku, № 41, с. 19
- Hopkins, Sludge management in intensive pond culture of shrimp: Effect of management regime on water quality, sludge characteristics, nitrogen extinction, and shrimp production, Aquacult. Eng., № 13, с. 11
https://doi.org/10.1016/0144-8609(94)90022-1 - Jeris, Pilot-scale, high rate biological denitrification, J. Water Pollut. Control Fed., № 47, с. 2043
- Kaiser, Nitrification filters for aquatic culture systems: state of the art, J. World Maricult. Soc., № 14, с. 302
https://doi.org/10.1111/j.1749-7345.1983.tb00086.x - Kaiser, Growth of trout in a recirculated system with pH-stabilization by denitrification, J. World Aquacult. Soc., № 20, с. 46
- Kawai, Biochemical studies on the bacteria in aquarium with circulating system. I. Change of the qualities of breeding water and bacterial population of the aquarium during fish cultivation, Bull. Jpn. Soc. Sci. Fish., № 30, с. 55
https://doi.org/10.2331/suisan.30.55 - Kikuchi, Ammonia oxidation in marine biological filters with plastic filter media, Fish. Sci., № 60, с. 133
https://doi.org/10.2331/fishsci.60.133 - Kinner, Light and electron microscopic studies of microorganisms growing in rotating biological contactor biofilms, Appl. Environ. Microbiol., № 45, с. 1659
https://doi.org/10.1128/AEM.45.5.1659-1669.1983 - Knosche, An effective biofilter type for eel culture in recirculating systems, Aquacult. Eng., № 13, с. 71
https://doi.org/10.1016/0144-8609(94)90026-4 - Krom, Water quality processes in fish culture systems: processes, problems, and possible solutions, № Vol. 2, с. 1091
- Kruner, Efficiency of nitrification in trickling filters using different substrates, Aquacult. Eng., № 2, с. 49
https://doi.org/10.1016/0144-8609(83)90005-5 - Kugelman, Water and energy recycling in closed aquaculture systems, с. 80
- Liao, Status and prospects of tilapia culture in Taiwan, с. 588
- Libey, Evaluation of a drum filter for removal of solids from a recirculating aquaculture system, с. 519
- Liltvedt, Screening as a method for removal of parasites from inlet water to fish farms. Short communication, Aquacult. Eng., № 9, с. 209
https://doi.org/10.1016/0144-8609(90)90006-L - Malone
- Malone, Chemical addition for accelerated nitrification of biological filters in closed blue crab shedding systems
- Malone, Optimizing nitrification in bead filters for warmwater recirculating aquaculture systems, с. 315
- Manthe, Limiting factors associated with nitrification in closed blue crab shedding systems, Aquacult. Eng., № 3, с. 119
https://doi.org/10.1016/0144-8609(84)90003-7 - McClintock, Nitrate versus oxygen respiration in the activated sludge process, J. Water Pollut. Control Fed., № 60, с. 342
- McLaughlin, Hatchery effluent treatment, US Fish and Wildlife Service, с. 167
- Mergaert, Applicability and trends of anaerobic pre-treatment of municipal wastewater, Water Res., № 26, с. 1025
https://doi.org/10.1016/0043-1354(92)90137-S - Meske, Fischzucht: neue verfahren der aquakultur, Naturwissenschaft, № 58, с. 312
https://doi.org/10.1007/BF00624736 - Meske, Fish culture in a recirculating system with water treatment by activated sludge, с. 527
- Metcalf and Eddy, Inc., Wastewater Engineering. Treatment, Disposal, Reuse, с. 1334
- Miller, Evaluation of three biological filters suitable for aquaculture applications, J. World Maricult. Soc., № 16, с. 158
https://doi.org/10.1111/j.1749-7345.1985.tb00197.x - Mires, Water quality in a recycled intensive fish culture system under field conditions, Israeli J. Aquacult.-Bamidgeh, № 42, с. 110
- Mudrak, Guidelines for economical commercial fish hatchery wastewater treatment systems, с. 174
- Muir, Aspects of water treatment and reuse in intensive fish culture systems, с. 451
- Muir, Recirculated water systems in aquaculture, с. 357
- Naegel, Combined production of fish and plants in recirculating water, Aquaculture, № 10, с. 17
https://doi.org/10.1016/0044-8486(77)90029-1 - Neori, Ulva lactuca biofilters for marine fishpond effluents. II. Growth rate, yield and C:N ratio, Bot. Mar., № 34, с. 483
https://doi.org/10.1515/botm.1991.34.6.483 - Ng, Water quality within a recirculating system for tropical ornamental fish, Aquaculture, № 103, с. 123
https://doi.org/10.1016/0044-8486(92)90406-B - Nijhof, Fixed film nitrification characteristics in sea-water recirculation fish culture systems, Aquaculture, № 87, с. 133
https://doi.org/10.1016/0044-8486(90)90270-W - Olsen, Differential photoinhibition of marine nitrifying bacteria: a possible mechanism for the formation of the primary nitrite maximum, J. Mar. Res., № 39, с. 227
- Olsen, Surface irrigation of cotton using aquaculture effluent, с. 159
- Oswald, Large scale production of algae, с. 271
- Otte, Management of closed brackish-water system for high density fish culture by biological and chemical water treatment, Aquaculture, № 18, с. 169
https://doi.org/10.1016/0044-8486(79)90029-2 - Otte, Effect of ozone on yellow substances accumulated in a recycling system for fish culture, ICES, C.M. 1977/E 27, с. 1
- Payne, Reduction of nitrogenous oxides by microorganisms, Bacteriol. Rev., № 37, с. 409
https://doi.org/10.1128/BR.37.4.409-452.1973 - Porath, Ammonia stripping by duckweed and its feasibility in circulating aquaculture systems, Aquat. Bot., № 13, с. 125
https://doi.org/10.1016/0304-3770(82)90046-8 - Quillere, An artificial productive ecosystem based on fish/bacteria/plant association. 1. Design and management, Agric. Ecosyst. Environ., № 47, с. 13
https://doi.org/10.1016/0167-8809(93)90133-A - Rakocy, Evaluation of a closed recirculating system for the culture of tilapia and aquatic macrophytes, с. 296
- Rakocy, Integration of vegetable hydroponics with fish culture: A review, с. 112
- Rakocy, Effect of hydroponic vegetable production on water quality in a closed recirculating system, J. World Aquacult. Soc., № 20, с. 64A
- Rennert, A possibility of combined fish and vegetable production in greenhouses, Adv. Fish. Sci., № 8, с. 19
- Rogers, Ammonia removal in selected aquaculture water reuse biofilters, Aquacult. Eng., № 4, с. 135
https://doi.org/10.1016/0144-8609(85)90010-X - Rosenthal, Recirculation systems in aquaculture, с. 284
- Ryther, Physical models of integrated waste recycling marine polyculture systems, Aquaculture, № 5, с. 163
https://doi.org/10.1016/0044-8486(75)90096-4 - Samsoon, Hypothesis for pelletisation in the upflow anaerobic sludge reactor, Water SA, № 13, с. 69
- Sarig, The fish culture industry in Israel in 1986, Bamidgeh, № 39, с. 95
- Sarig, Introduction and state of art in aquaculture, с. 2
- Sarig, The fish culture industry in Israel in 1991, Israeli J. Aquacult.-Bamidgeh, № 44, с. 39
- Sayler, Environmental biotechnology: Perceptions, reality, and applications, с. 1
- Sharma, Nitrification and nitrogen removal, Water Res., № 11, с. 879
https://doi.org/10.1016/0043-1354(77)90078-1 - Shilo, Factors which affect the intensification of fish breeding in Israel. 2. Ammonia transformation in intensive fish ponds, Bamidgeh, № 34, с. 101
- Shpigel, A proposed model for ‘environmentally clean’ land-based culture of fish, bivalves and seaweeds, Aquaculture, № 117, с. 115
https://doi.org/10.1016/0044-8486(93)90128-L - Seymour, Towards a reduction of pollution from intensive aquaculture with reference to the farming of salmonids in Norway, Aquacult. Eng., № 10, с. 73
https://doi.org/10.1016/0144-8609(91)90001-Z - Sich, Distribution of bacteria in a biofilter-equipped, semi-closed intensive fish culture system, с. 55
- Solbe J.F. de, Fish farm effluents: A United Kingdom survey, с. 29
- Sutton, Further observations on a fish production system that incorporates hydroponically grown plants, Progr. Fish-Cult., № 44, с. 55
https://doi.org/10.1577/1548-8659(1982)44[55:FOOAFP]2.0.CO;2 - Takeda, The characterization of yellow substances accumulated in a closed recirculating system for fish culture, с. 129
- Ten Brummeler, Methanogenesis in a upflow anaerobic sludge blanket reactor at pH 6 on an acetate-propionate mixture, Appl. Environ. Microbiol., № 49, с. 1472
https://doi.org/10.1128/AEM.49.6.1472-1477.1985 - Timmons, Aquaculture Water Reuse Systems: Engineering Design and Management, № Vol. 27, с. 333
- Tucker, Evaluation of a commercial bacterial amendment for improving water quality in channel catfish ponds, с. 1
- Uhlmann, BOD removal rates of waste stabilization ponds as a function of loading, retention time, temperature and hydraulic pattern, Water Res., № 13, с. 193
https://doi.org/10.1016/0043-1354(79)90092-7 - Vandermeulen, Ammonia uptake using Ulva (Chlorophyta) in intensive fishpond systems: mass culture and treatment of effluent, J. Appl. Phycol., № 2, с. 363
https://doi.org/10.1007/BF02180927 - Van Rijn, Aerobic and anaerobic biofiltration in an aquaculture unit—Nitrite accumulation as a result of nitrification and denitrification, Aquacult. Eng., № 9, с. 217
https://doi.org/10.1016/0144-8609(90)90017-T - Van Rijn, Nitrite accumulation by denitrifying bacteria isolated from fluidized bed reactors operated in an aquaculture unit, с. 39
- Van Rijn, Mechanisms of ammonia transformations in fish ponds, с. 17
- Van Rijn, Chemical, physical and biological parameters of superintensive concrete fish ponds, Bamidgeh, № 38, с. 35
- Van Rijn, Anaerobic treatment of intensive fish culture effluents: Digestion of fish feed and release of volatile fatty acids, Aquaculture, № 133, с. 9
https://doi.org/10.1016/0044-8486(94)00386-3 - Watanabe, Simultaneous nitrification and denitrification in micro aerobic biofilms, Water Sci. Technol., № 26, с. 511
https://doi.org/10.2166/wst.1992.0431 - Wheaton, Fixed film nitrification filters for aquaculture, с. 272
- Whitson, A prediction of feasibility of denitrification of closed recirculating marine systems, J. World Aquacult. Soc., № 22, с. 65
- Whitson, Biological denitrification in a closed recirculating marine culture system, с. 458
- Wilderer, Competition in denitrification systems affecting reduction rate and accumulation of nitrite, Water Res., № 21, с. 239
https://doi.org/10.1016/0043-1354(87)90056-X - Willet, Fertilizing properties of trout farm waste, Agric. Wastes, № 17, с. 7
https://doi.org/10.1016/0141-4607(86)90144-7 - Williamson, A model of substrate utilization by bacterial films, J. Water Pollut. Control Fed., № 8, с. 9
- Williamson, Verification studies of the biofilm model for substrate utilization, J. Water Pollut. Control Fed., № 48, с. 281
- Yoda, Long term competition between sulfate-reducing and methane-producing bacteria for acetate in anaerobic biofilm, Water Res., № 21
https://doi.org/10.1016/0043-1354(87)90140-0 - Zeikus
- Zoetemeyer, Acidogenesis of soluble carbohydrate-containing wastewater, с. 13
- Zohar, Intensive culture of tilapia in concrete tanks, Bamidgeh, № 37, с. 103
- Zweig, An integrated fish culture hydroponic vegetable production system, Aquacult. Mag., № 12, с. 34
Publications that cite this publication
Hotspots and trends of biological water treatment based on bibliometric review and patents analysis
Lili Jin, Xiangzhou Sun, Hongqiang Ren, Hui Huang
https://doi.org/10.1016/j.jes.2022.03.037
2023, Journal of Environmental Sciences, p.774-785
Scopus
WoS
Crossref citations:25
Mutualism between euryhaline tilapia Sarotherodon melanotheron heudelotii and Chlorella sp.—Implications for nano-algal production in warmwater phytoplankton-based recirculating systems
Sylvain Gilles, Gérard Lacroix, Daniel Corbin, Ngansoumana Bâ, Carla Ibañez Luna, Jacob Nandjui, Allassane Ouattara, Ousséni Ouédraogo, Xavier Lazzaro
https://doi.org/10.1016/j.aquaeng.2008.09.001
2008, Aquacultural Engineering, №2-3, p.113-121
Scopus
WoS
Crossref citations:12
Effects of flow rate on growth performance and welfare of juvenile turbot (<i>Scophthalmus maximus</i>L.) in recirculating aquaculture systems
Guoxiang Sun, Meng Li, Jie Wang, Ying Liu
https://doi.org/10.1111/are.12597
2014, Aquaculture Research, №4, p.1341-1352
Scopus
WoS
Crossref citations:10
Bioremediation of bacteria in aquaculture waste using the polychaete Sabella spallanzanii
Loredana Stabili, Roberto Schirosi, Margherita Licciano, Emanuela Mola, Adriana Giangrande
https://doi.org/10.1016/j.nbt.2010.06.018 ·
2010, New Biotechnology, №6, p.774-781
Scopus
WoS
Crossref citations:32
Keeping the water clean — Seaweed biofiltration outperforms traditional bacterial biofilms in recirculating aquaculture
Patrick L. Cahill, Catriona L. Hurd, Mark Lokman
https://doi.org/10.1016/j.aquaculture.2010.05.032 ·
2010, Aquaculture, №1-4, p.153-159
Scopus
WoS
Crossref citations:30
Effect of increased water recirculation rate on algal supply and post-larval performance of scallop (Pecten maximus) reared in a partial open and continuous feeding system
Gyda Christophersen, Lise Torkildsen, Terje van der Meeren
https://doi.org/10.1016/j.aquaeng.2006.03.005
2006, Aquacultural Engineering, №3, p.271-282
Scopus
WoS
Crossref citations:7
The culture of fish, mussels, sea cucumbers and macroalgae in a modular integrated multi-tropic recirculating aquaculture system (IMTRAS): Performance and waste removal efficiencies
Yuanzi Huo, Kevin Stuart, Federico Rotman, Douglas Ernst, Mark Drawbridge
https://doi.org/10.1016/j.aquaculture.2024.740720 ·
2024, Aquaculture, p.740720
Scopus
WoS
Crossref citations:0
Taxonomy of Means and Ends in Aquaculture Production—Part 1: The Functions
Ragnheidur Bjornsdottir, Gudmundur Oddsson, Ragnheidur Thorarinsdottir, Runar Unnthorsson
https://doi.org/10.3390/w8080319 · Full text
2016, Water, №8, p.319
Scopus
WoS
Crossref citations:6
Is Ulva sp. able to be an efficient biofilter for mariculture effluents?
M. Shpigel, L. Guttman, D. Ben-Ezra, J. Yu, S. Chen
https://doi.org/10.1007/s10811-019-1748-7
2019, Journal of Applied Phycology, №4, p.2449-2459
Scopus
WoS
Crossref citations:17
Remote Improved Inspecting Gas Sensing System Based on CAN Communication
Jian Ming Jiang, Shi Bing, Zhen Hua Ma
https://doi.org/10.4028/www.scientific.net/amr.490-495.486
2012, Advanced Materials Research, p.486-489
Scopus
Crossref citations:0
Find all citations of the publication
About this publication
Publication type | Журнальна стаття |
Number of citations | 184 |
Number of works in the list of references | 130 |
Journal indexed in Scopus | Yes |
Journal indexed in Web of Science | Yes |